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Vector Space

A vector space defined over a field k, is a collection of vectors,
which may be multiplied by scalars λ ∈ k, and added together.

kn

k[x1, x2, . . . , xn]

k[[x1, x2, . . . , xn]]

k[∂x , x ]

Matn(k)
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Algebra

An algebra is a vector space V equipped with a bilinear product;
i.e., the vectors can be multiplied while preserving linearity.

k[x1, . . . , xn]

k[[x1, . . . , xn]]

k[x1, x2, . . . , xn, ∂x1 , ∂x2 , . . . , ∂xn ]

Matn(k)

Merrick Cai; Mentor: Daniil Kalinov The Hilbert Polynomial of the Rational Cherednik Algebra



Algebra

An algebra is a vector space V equipped with a bilinear product;
i.e., the vectors can be multiplied while preserving linearity.

k[x1, . . . , xn]

k[[x1, . . . , xn]]

k[x1, x2, . . . , xn, ∂x1 , ∂x2 , . . . , ∂xn ]

Matn(k)

Merrick Cai; Mentor: Daniil Kalinov The Hilbert Polynomial of the Rational Cherednik Algebra



Graded Algebra

An algebra A is graded if A =
⊕

n≥0 An for subspaces An and
AiAj ⊂ Ai+j .

Example

The algebra A = k[x1, x2, . . . , xn] has a grading given by Ai the
subspace of homogeneous degree i polynomials.
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Hilbert Series

The Hilbert series of a graded algebra A is given by

h(z) =
∑
n≥0

dim(An)zn.

Example

The algebra A = k[x1, . . . , xn] has the usual grading by degree.
Then dim(Ai ) =

(n+i−1
i

)
, so hA(z) =

∑
i≥0
(n+i−1

i

)
z i = 1

(1−z)n .
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Representation

A representation of an algebra A is a vector space V equipped with
a homomorphism ρ : A→ End(V ).

Example

Take V = Cn and G = Sn. Then the group algebra k[Sn] acts on
v ∈ V by permuting the indices; e.g., [(123)] (x , y , z) = (z , x , y).

A subrepresentation is a subspace W ⊂ V which remains closed
under the action of ρ(A).

Merrick Cai; Mentor: Daniil Kalinov The Hilbert Polynomial of the Rational Cherednik Algebra



Representation

A representation of an algebra A is a vector space V equipped with
a homomorphism ρ : A→ End(V ).

Example

Take V = Cn and G = Sn. Then the group algebra k[Sn] acts on
v ∈ V by permuting the indices; e.g., [(123)] (x , y , z) = (z , x , y).

A subrepresentation is a subspace W ⊂ V which remains closed
under the action of ρ(A).

Merrick Cai; Mentor: Daniil Kalinov The Hilbert Polynomial of the Rational Cherednik Algebra



Representation

A representation of an algebra A is a vector space V equipped with
a homomorphism ρ : A→ End(V ).

Example

Take V = Cn and G = Sn. Then the group algebra k[Sn] acts on
v ∈ V by permuting the indices; e.g., [(123)] (x , y , z) = (z , x , y).

A subrepresentation is a subspace W ⊂ V which remains closed
under the action of ρ(A).

Merrick Cai; Mentor: Daniil Kalinov The Hilbert Polynomial of the Rational Cherednik Algebra



Irreducible Representation

A representation (A,V ) is irreducible if there does not exist any
(proper) subspace W ⊂ V which is closed under the action of A.

Example

Let A = k[Sn] be the group algebra of Sn and V = Cn be a vector
space where Sn acts by permutations. Then Span{(1, 1, 1, . . . , 1)}
is an irreducible subrepresentation.
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Differential Operators

Let V = k[x ]. The differential operator acts by ∂xx
k = kxk−1. In

characteristic 0 we can define the algebra of differential operators
as a subalgebra in End(k[x ]) generated by x and ∂x .

But in characteristic p, ∂px acts by 0, this is problematic. So to
define k[x , ∂x ] , use the fact that [∂x , x ] = 1. So
k[x , ∂x ] = k〈x , y〉/([y , x ] = 1).
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Rational Cherednik Algebra of Type An

The Cherednik algebra Ht,c(n) in characteristic 0 is generated by
the following in End(k[x1, . . . , xn]/(x1 + · · ·+ xn)):

Polynomials in k[x1, . . . , xn]

Acts by multiplication

Elements of Sn
Acts by permuting the xi ’s

The Dunkl operators Dyi

An extension of the partial derivative
Dyi = t∂xi − c

∑
k 6=i

1−σik

xi−xk
[Dyi ,Dyj ] = 0

The relevant cases are t = 1 and t = 0. We will work with t = 0.
We need more abstract definition for characteristic p as for
differential operators.
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Dunkl Operators

The Dunkl operator can be described by Dyi = t∂xi − c
∑

k 6=i
1−σik
xi−xk .

For t = 1, an example of Dy1

(
x1x

2
2x

3
3

)
:

1∂x1
(
x1x

2
2x

3
3

)
= x22x

3
3

1−σ12
x1−x2

(
x1x

2
2x

3
3

)
= x33

(
x1x22−x21 x2

x1−x2

)
= −x1x2x33

1−σ13
x1−x3

(
x1x

2
2x

3
3

)
= x22

(
x1x33−x31 x3

x1−x3

)
= −x21x22x3 − x1x

2
2x

2
3

For k > 3, then 1−σ1k
x1−xk

(
x1x

2
2x

3
3

)
= x22x

3
3

Dy1

(
x1x

2
2x

3
3

)
= ∂x1

(
x1x

2
2x

3
3

)
−
∑

k 6=1
1−σ1k
x1−xk

(
x1x

2
2x

3
3

)
=

x22x
3
3 + c

(
x1x2x

3
3 + x21x

2
2x3 + x1x

2
2x

2
3 − (n − 3)x22x

3
3

)
The singular polynomials are those which are in the kernel of all
Dunkl operators Dyi−yj for all i , j .
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Baby Verma Modules

By Mt,c denote the Verma module
k[x1, . . . , xn]/(x1 + · · ·+ xn) with a standard structure of
Ht,c(n) representation

Ideal of symmetric polynomials is a subrepresentation

Denote by Nt,c the quotient by this subrepresentation, which
is the baby Verma module
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Contravariant form

The contravariant form B : Sh⊗ Sh∗ → k is defined by
B(1, 1) = 1 and for y ∈ h, x ∈ h∗, g ∈ Sh, f ∈ Sh∗, then
B(yg , f ) = B(g ,Dy (f )) and B(g , xf ) = B(Dx(g), f ).
The kernel of B is given by x ∈ Sh∗ such that for all y ∈ Sh, then
B(y , x) = 0.

The kernel is a subrepresentation

Define Lt,c = Mt,c/kerB

Lt,c = Nt,c/kerB

L is an irreducible representation of Ht,c
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Purpose

To find the Hilbert polynomial of the irreducible quotient Lt,c in
the polynomial representation of the rational Cherednik algebra of
type An, when the characteristic p - n.

The singular polynomials generate a subrepresentation so we would
like to find them and remove them.
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Goal

To find the smallest d such that degree d polynomials in the
simultaneous kernel of the Dunkl operators Dyi−yj exist, and find
the dimension of this kernel.
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Past Results: Balagovic/Chen

Balagovic and Chen showed that if no singular polynomials existed,
the Hilbert polynomial of Nt,c(τ) is as follows:

t = 1 =⇒ hN1,c (τ)(z) =

(
1− z2p

) (
1− z3p

)
· · · (1− znp)

(1− z)n−1
,

t = 0 =⇒ hN0,c (τ)(z) =

(
1− z2

) (
1− z3

)
· · · (1− zn)

(1− z)n−1
.

They showed that

hLt,c (τ)(z) =

(
1− zp

1− z

)n−1
h (zp)

for some polynomial h with integer coefficients.

They also proved that kerB is a maximal proper submodule of the
Verma module Mt,c(τ), and that Lt,c(τ) is irreducible.
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Methods

We wrote a program in Sage to compute the dimensions of
the subspaces for various p, n in Lt,c

We compared the dimension to those predicted by
Balagovic/Chen for Nt,c to find existence of singular
polynomials

We computed these singular polynomials

We conjectured a pattern and looked to prove it
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Current Progress for t = 0

For p|n:

The singular polynomials are xi for i = 1, 2, . . . , n

The Hilbert polynomial is 1

The case t = 1 and p|n was done by Devadas and Sun.
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Progress for p = 2 and t = 0

For p = 2, the following polynomials are singular for distinct i , j , k :

x2i + xixj + x2j
xixj + xjxk + xkxi
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Progress for p|n − 1 and t = 0

For p odd and distinct i , j , k , l , the following polynomials are
singular:

(xj + xk)(xi − xj − xk)

(xi − xj)(xk − xl)
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Conjectures

The Hilbert polynomial for p = 2 and t = 0 is
hL0,c (z) = 1 + (n − 1)z + (n − 1)z2 + z3

Etingof conjectures that for n = kp + r , then
hL0,c (z) = [r ]z ![p]zQr (n, z) and
hL1,c (z) = [r ]zp ![p]zp [p]n−1z Qr (n, zp), for

Qr (n, z) =
(n−1
r−1
)
z r+1 +

∑r
i=0

(n−r−2+i
i

)
z i ,

[k]z ! = [k]z [k − 1]z · · · [1]z , and [w ]z = 1−zw
1−z
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Future Work

In the future, we would like to find the Hilbert polynomials for Lt,c ,
and the singular polynomials for various p, n. We would like to
study more cases in t = 0 and prove irreducibility, then consider
the connection between t = 0 and t = 1.
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